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The linear stability of the Batchelor (1964) vortex is investigated. Particular 
emphasis is placed on modes found recently in a numerical study by Khorrami 
(1991). These modes have a number of features very distinct from those found 
previously for this vortex, including (i) exhibiting small growth rates at  large 
Reynolds numbers and (ii) susceptibility to destabilization by viscosity. In  this paper 
these modes are described using asymptotic techniques, producing results which 
compare very favourably with fully numerical results at  large Reynolds numbers. 

1. Introduction 
Stability analysis of streamwise vortices plays an important role in such diverse 

areas as wake-hazard reduction, combustor optimization, and three-dimensional 
separation control. Employing the Batchelor vortex (Batchelor 1964) for the mean 
velocity profile, a great deal of effort has been directed towards understanding the 
stability characteristics of a trailing-line vortex ; the numerical works of Lessen, 
Singh & Paillet (1974), Lessen & Paillet (1974) and Duck & Foster (1980) should be 
mentioned. Using asymptotic analysis, the findings of the above authors were 
confirmed by many investigators, including Stewartson (1982), Leibovich & 
Stewartson (1983), Stewartson & Capell (1985), Stewartson & Brown (1985), Duck 
(1986), and Stewartson & Leibovich (1987). These asymptotic studies reveal the 
complex nature and structures of the inviscid modes with large negative azimuthal 
wavenumbers. Furthermore, they showed the intricacies and difficulties associated 
with the numerical computations of these instabilities. However, the extension of 
these results to the case of low azimuthal wavenumbers is of course not valid. Similar 
analyses based on inviscid disturbances with positive wavenumbers have failed to 
reveal any unstable modes. Indeed, most of the above studies treated only inviscid 
disturbances, with the possible exception of the work of Stewartson (1982), and 
viscosity is believed to have a stabilizing influence, generally. 

Recently, using a numerical method, Khorrami (1991) found new viscous modes of 
instability for the Batchelor vortex. The two reported modes are for positive 
azimuthal wavenumbers which previously were thought to be stable. Furthermore, 
Khorrami found that these modes differed in two respects from the previously 
studied inviscid disturbances. First, they had no associated higher modes, and 
second they had growth rates which were generally orders of magnitude smaller. In  
the light of this, it seems quite unlikely that these new instabilities have structures 
similar to the inviscid perturbations reported by previous investigators. However, 
numerical methods are not the proper tool for providing either scale and structural 
information or a limiting analysis near the neutral curves for these modes. This paper 
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is an effort to address these concerns, as well as to provide firmer grounds for the 
existence of the instability modes with positive (and zero) azimuthal wavenumbers 
for the Batchelor vortex. A combination of asymptotic and numerical analysis is 
presented. 

2. Problem formulation 
If (u*, w*, w*) denote the dimensional velocity components in the axial (x*), radial 

(r*) ,  and azimuthal (8) directions respectively, then the similarity solution of swirling 
wake flows at  high Reynolds numbers due to Batchelor (1964) may be written 

wz = (Co/r*)(l-e-v 1 9  (2.1) 

where 7 = U, r*%/(4vx*), (2.3) 

v is the kinematic viscosity of the (incompressible) fluid, L is a constant (akin to a 
drag coefficient), Co is the circulation at  large radius, and 

Q(7) = e-v{logr+ei(q) -0.807) +2ei(7) -2ei(27), (2.4) 

where 

Batchelor (1964) showed that the term involving &(v) in (2.2) was numerically 
much smaller in magnitude than the other terms, consequently it will be neglected 
in the present analysis. Similar assumptions were implemented by earlier studies on 
the stability of this class of vortical flow, as detailed in the previous section. 
Following Lessen et al. (1974), we scale velocity by 

c2 u x* L P  
8vx* v 8vx* 

us = L l o g - - e _ + d ,  

and length by 

This leads to a non-dimensional mean-flow profile given by 

r, = (~VX*/U,);. (2-7) 

where 

and 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

We now write the velocity field as the sum of the mean flow together with a small- 
amplitude perturbation, namely 

u* = U,(U+dC), v* = U,dV", w* = U,(W+SZ?r), (2.12) 

while the pressure is written as 

P* = p q [ n + S @ ] ,  

where 

with 

(2.13) 

(2.14) 

(2.15) 
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A tilde quantity here represents the perturbation about the mean state and S is the 
(small) perturbation amplitude. We now make the further assumption that U and W 
(and indeed also U,) are independent of x*. This will generally be an improper 
assumption, and is equivalent to a parallel-flow approximation (which has been used 
as an assumption in a number of diverse stability investigations). However, we 
justify this step on the following grounds. First, one of the primary aims of this paper 
is to develop asymptotic theories to compare with previous numerical results, which 
were all based on the same parallel-flow approximation. Second, since to leading 
order the solutions with which we are concerned turn out to be inviscid in form, it 
can be shown that to first order the parallel-flow approximation is a right and proper 
one. 

We now return to consideration of the form to be taken for the perturbation 
quantities. We write 

(C,fl,G,@) = {P(r),iG(r),H(r), P(r)}exp{i(ax+nB-act)}, (2.16) 

where a and n are the axial and azimuthal wavenumbers respectively, and c = c, + ic, 
is the complex wave speed. It turns out that the problem remains essentially 
unaltered if we use 

u = e-re (2.17) 

as the mean axial velocity distribution. The net effect of this is solely on c,, while the 
important amplification rate ci is totally unaffected. 

If we then substitute (2.12), (2.13), and (2.16) into the equations of motion, and 
consider terms of O(S), we obtain 

G ' + G / r + d + n H / r  = 0, (2.18) 

-i---+ G ic' - - n2+ 1 G +  --7.... = 0, (2.19) 
Re Rer [ R e {  r2 [li: r 

l e { n 2 r ~ 1 + a 2 } ] H + [ i ~ + i ~ + " ] G + i -  nP  = 0, (2.20) H'+ i$+- - [ dr r Rer2 r 
H 1  
Re Rer 

dU [ j e { r :  }] dr 
P'+ i$+- -+a2 P + i - G + i d = O ,  

F 1  
.Re Rer 

(2.21) 

where a prime denotes differentiation with respect to the radial coordinate. Here the 
Reynolds number is defined as 

and $ = a(U-c)+nW/r.  (2.23) 

The boundary conditions that must be imposed on this system are: at r = 0 

Re = Uara/v, (2.22) 

G(0) = H ( 0 )  = F'(0) = P'(0) = 0 

G(0) = G(0) fH(0) = F(0)  = P(0) = 0 

P(0)  = G(0) = H ( 0 )  = P(0)  = 0 

for n = 0, 

for n = f 1, 

for n > 1,  (2.24) 

while as r+ co, 
F(r ) ,  G ( r ) ,  H(r ) ,P ( r )  + 0. 

In the following sections we study the above system in the limit as Re + co. 

(2.25) 
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3. The general leading-order behaviour as Re + 03 

A number of papers previously addressed the inviscid limit of the system 
(2.18)-(2.21), (2.24), (2.25), in particular for modes which exhibit finite temporal 
growth rates (acJ in this limit. Rather than concern ourselves with these modes, we 
focus on another family of modes found numerically by Khorrami (1991). These 
exhibit significantly diminishing growth rates with a decrease in viscosity. Inspection 
of a number of these results, and others not reported, suggested the following two 
general characteristics of these modes as Re+ co : (i) c, = 0 ( 1 )  and (ii) ci = O(I3e-'). 
These trends strongly suggest we seek an asymptotic expansion to our solution of the 
form 

{ F ,  G , H , P )  = {F,, G , , ~ o , ~ , ~ + ~ e - ' ~ ~ l ,  Gl,Hl, P 1 > + O W 2 ) ,  

c = c, +Re-'c, + O(Re-2), 

(3.1) 

(3.2) 

where we expect c, to be real. Here we are neglecting the effects of viscosity to leading 
order by assuming that the neutral modes will not be singular; this is strongly 
suggested by the viscous calculations of Khorrami (1991). Substituting (3.1), (3.2) 
into (2.18)-(2.21) and taking just O(1) terms yields the following (inviscid) system of 
equations 

GA + G,/r  + OLF, + nH,/r = 0, (3.3) 

$, Go + 2 WH,/r = PA, (3.4) 

$,F,+ U'G, = -,Po, (3.5) 

#, H, + ( W' + W/r) Go = - nP,/r, (3.6) 

where $, = a( U -  c,) + nW/r. (3.7) 

Further, F, and H ,  may be eliminated between these equations to yield the 
following ordinary differential equations as determined by Duck & Foster (1980) : 

n(rW)'+ar2U' 1 n2 + a2r2 
dr r"0 --]Go r + r"0 PO , 

or symbolically 

together with 
~ l { G , > P , )  = 0, 

2nW 
dr 

or symbolically 
L,{G,,P,) = 0. 

(3.10) 

(3.11) 

The boundary conditions may be simply inferred from (2.24) and (2.25). 
Equations (3.8), (3.10) (and equivalent) have been investigated by a number of 

authors (e.g. Lessen et al. 1974; Duck & Foster 1980), in particular for complex 
values of the wave speed c,. For this study, we carried out a similar investigation but 
sought real values of c,. 

A Chebyshev spectral collocation method was employed to perform the numerical 
tasks throughout this study, since spectral techniques are well known for their 
accuracy and fast convergence rate. The mathematical theory of such methods is 
found in Gottlieb & Orszag (1977) and Gottlieb, Hussaini & Orszag (1984, p. 1)  and 
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is not presented here. Its implementation for the stability of swirling flows is given 
in detail by Khorrami, Malik & Ash (1989), and readers are referred to that paper for 
further information. Briefly, the method consists of expanding each perturbation 
eigenfunction in a truncated Chebyshev series, for example 

(3.12) 

where 6 is the independent variable in Chebyshev space. The governing equations 
(3.3) and (3.6), in discretized form, are then arranged in a generalized eigenvalue 
format. That is, if D and E represent the coefficient matrices, then 

DR= wEX, (3.13) 

where the frequency o = ac is the eigenvalue, and the eigenvector X is represented 

X = {GHFP}T. (3.14) 

It should be realized that E is a singular matrix. The singularity was removed by 
adding the term yup (which is called an artificial compressibility factor) to the 
continuity equation (see Malik & Poll 1985), where y is a small parameter of the order 
of 10-l8. This has been shown to have a negligible effect on the computed physical 
eigenvalues as reported by Khorrami et al. (1989). The method is global and therefore 
the entire eigenvalue spectrum could be obtained in a single run. The complex 
generalized eigenvalue solver employed was the IMSL QZ routine ‘EIGZC ’. 

The outer boundary conditions were enforced at  T,,, = 100, and the number of 
Chebyshev polynomials required varied depending on flow conditions, but usually 
was in the range between 60 and 80. At each step, care was taken to ensure that 
results were accurate to at least six or seven significant figures. The eigenfunctions 
were obtained using an inverse Rayleigh’s method (see Wilkinson 1965). The 
discretization for the local scheme was also spectral. In  fact, the same matrices D and 
E were used to compute the eigenfunctions. 

It developed that the results from this study for n = 0 were somewhat different 
from those of n + 0 ; this has important implications on the asymptotic structure of 
the solution. Consequently, we shall consider the axisymmetric case separately. 

by 

4. Axisymmetric (n = 0 )  modes 
For n = 0, our numerical scheme produced results for wave speed co over a range 

of values of swirl parameter q and axial wavenumber a that had the following general 
features: (i) a number of distinct, real modes exist, (ii) all these modes have c,, < 0, 
and (iii) these modes were quite distinct from those of other studies (e.g. Lessen et al. 
1974; Duck & Foster 1980) for which ci 9 0. The present routine was able to generate 
these other modes, which served as a useful check on the accuracy of our scheme. 
Results for the variation of co with a for the case n = 0, and q = 1.0, are presented 
in figure 1. Note that two distinct modes are shown. We believe these modes to be 
the two most important/dominant in this case. We refer to the mode represented by 
a solid line as mode I, and that represented by a broken line as mode 11. 

Note that the significance of co < 0 is that no critical layers exist (i.e. q50 0 for all 
r ) ,  a feature that leads to certain simplifications. The key question now is whether 
these modes are stable or unstable, since the study so far only reveals them to be 
neutrally stable in the limit of large Reynolds numbers. To determine the effects of 
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a 

FIGURE 1. co 'us. a, TL = 0,  q = 1.0, inviscid calculations: -, mode I ;  ---, mode 11. 

viscosity on these modes, we must consider terms O(Re-') in (2.18)-(2.21). After some 
algebra, we obtain the following two first-order equations for G, and Pl:  

Ll(G1,Pl) = Ra, 

where 

and 

2n 
R 2 = - G - - G ' +  0 [ - n> + a2] Go+_f2Ho,  r o  

Here we retain n since these equations are also useful for other values of n. 
To solve the system of equations (4.1) and (4.2), we use standard theory relating 

to non-homogeneous linear ordinary differential equations (Ince 1956). According to 
this theory, in order that (4.1), and (4.2) have a solution, with boundary conditions 
given by (2.24), (2.25), certain solvability conditions must be met. For the present 
problem, we must have 

[G+R,, + P+R,,] dr [G+R,, +P+R,J dr, (4.10) 

where G+ and P+ are the functions adjoint to the system (3.8), (3.10), i.e. 

(4.11) 
-=-[ dG+ n(rW)'+ar2U' 

dr r"0 -=-[ dP+ n2 + a2r2 ] 2nW 
G + + T P + ,  

dr r"0 r $0 

(4.12) 



The stability of a trailing-line vortex 181 

0 0.5 1 .o 1.5 2.0 
a 

FIGURE 2. wi 218. u, n = 0,  q = 1.0, asymptotic results, mode I: 
-, Re = 1OOOO; ---, Re = 5000. 

with boundary conditions 

P + ( O )  = G+’(O) = 0 if n = 0, 

P+’(O) = G+(O) = 0 if n = f 1,  

P+(O)  = G+(O) = 0 if In1 > 1, (4.13) 

andP+,G++Oasr+co,  foralln.  
Note that owing to the nature of the solution for co real, c1 must be imaginary. The 

adjoint system (4.1 1 )  and (4.12) was discretized similarly to the case of the governing 
equations (3.3)-(3.6). However, owing to the nonlinear occurrence of #o in (4.11) 
which results in a quadratic term for the frequency, o, a slightly different approach 
was taken. Here, the eigenvalues were obtained using a companion matrix method. 
The method is very straight-forward (see Bridges & Morris 1984 and Khorrami et al. 
1989), and involves linearizing the quadratic term by the following transformation : 

P + - w P +  = 0, (4.14) 

which leads to a third equation for the adjoint set. For this case, the eigenvector 
in (3.13) then becomes 

8 = { G+P+P+}T. (4.15) 

It must be mentioned that for each computation, the computed eigenvalue spectrum 
of the adjoint system matched the spectrum associated with the original set, i.e. 
(3.3)-(3.6). This is an independent check on the accuracy and integrity of the results. 

To obtain cl, a Gauss-Chebyshev quadrature was employed to evaluate the 
integrals of (4.10); the procedure is straightforward. To ensure accurate results, the 
number of Chebyshev polynomials, N ,  was increased until c1 had converged to at  
least five significant figures. Typically 90 to 100 polynomials were more than 
sufficient to obtain the required accuracy. Results for wi = Im {ac,/Re} where n = 0, 
q = 1.0, Re = 5000 and 1OOOO are shown on figure 2 for mode I. It is clear that the 
first of these modes (figure 1) is destabilized over a range of a with the introduction 
of the effects of viscosity. Meanwhile, the results for wi for mode I1 are shown in figure 
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a 
FIGURE 3. oi ws. a, n = 0, q = 1.0, Re = 10000, mode 11: 

-, fully viscous numerical ; ---, asymptotic. 

a 
FIGURE 4. oi vs. a, n = 0, q = 1.0, fully viscous numerical results: 

-, Re = 10000; ---, Re = 5000. 

3, and it is clear that viscosity stabilizes this mode. Also shown (on figure 4) are 
results for wi = Im{aci} for mode I obtained using the fully viscous routine of 
Khorrami (1991), at the same values of q and Reynolds number. The fully viscous 
results appear to exhibit an upper neutral point which is predicted extremely 
effectively by our asymptotic results. The growth rate aci in the region of the upper 
neutral point is also predicted accurately by asymptotic theory. However, there is an 
important point of disagreement concerning the nature of aq as a+O between the 
Re S 1 results and those for the full viscous equations. According to our asymptotic 
theory this quantity approaches a finite value as a+O while the fully viscous 
computation predicts a (sharp) drop off at small values of a. 

However, this point of disagreement is quite clear. If lac1( approaches a constant 
value as a+O, then c1 = O ( l / a )  as a+O, and hence a breakdown in the wave speed 
expansion (3.2) must occur. Additionally, if n = 0, it is also clear that as a+O, # + O  
(for bounded c )  for all T .  Specifically this breakdown must occur when a = O(Re-'), 
and hence we define a scaled axial wavenumber 

d = Rea = O(1).  (4.16) 
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ti 

FIGURE 5. Im{ttc,,(h)} 2)s. h, n = 0, q = 1.0. 

Guided by previous results for a + 0, and by consideration of the orders of magnitude 
of various terms in the governing equations, for a = 0(1) we must have 

F = ~ e @ , ( r ) + o ( l ) ,  G = B,(r)+O(Re-l),\ 
(4.17) 

H = ReIZ,(r)+o(i), P = ReP,(r)+o(i) ,  J 
and the expansion for the complex wave speed (3.2) is retained. Substituting (4.17) 
into (2.18)-(2.21) and implementing (4.16), we obtain to leading order 

Q, + 6 , / r  + do = 0, 

2wH0/r = f i ,  
(4.18) 

(4.19) 

(4.20) 

(4.21) 
1 -  dU - -& - -Fi  + [ - iac, + i a q  a, + i - Go + i d ,  = 0, 
r dr 

where the appropriate boundary conditions may be inferred from (2.24) and (2.25). 
The above system is then an eigenvalue problem for co(a), and was solved using a 
simplified form of the viscous routine used by Khorrami (1991). However, owing to 
the absence of the eigenvalue term in the r-momentum equation, matrix E becomes 
singular. Here the singularity is removed via a procedure which utilizes row and 
column operations (see Metcalfe & Orszag 1973). In  this procedure, the rank of 
matrices D and E is reduced first and the eigenvalues are then obtained using the QZ 
routine. Results for Irn{~c,(Z)} are shown in figure 5 for the case p = 1.0, first mode. 
It is quite clear that a lower neutral point is predicted (at d x go), while as a+ 00, 

Im{Eco(E)}+2.3. This is in agreement with the values shown on figure 2 as a+O. 
Indeed a routine asymptotic analysis of the system (4.18)-(4.21) as Z+ 00 confirms 
a correct asymptotic match with the a = 0(1), a+O solution. 

The eigenfunctions near the upper neutral curve for the case of n = 0, a = 1.25, 
Re = 10000 and p = 1.0 are shown in figure 6. The curves displayed were obtained 



184 P. W.  Duck and M .  R. Khorrami 

1.2 -. -.: G 
H 
F 
P 

_ _ _ _ _ _ _ _ - _  

3 Y 

.- - 
3 
4 

I 
0 1 2 3 4 5 6 

r 
FIGURE 6. Eigenfunction components, n = 0, a = 1.25, Re = 10OO0, q = 1.0, mode I, 

fully viscous calculations. 

using the full viscous equations and are normalized with respect to the maximum 
value of the azimuthal component. Note that these viscous eigenfunctions are 
virtually indistinguishable from the inviscid eigenfunctions computed for the same 
parameters. 

Thus, to summarize, we were able to predict (using two asymptotic analyses) both 
the upper and lower neutral points of this particular unstable mode as well as the 
temporal growth rates of the full viscous equation results (figure 4). Furthermore, the 
system (4.18)-(4.21) was also solved for the second (stable) mode, and it was found 
that this remained stable over the entire range of &. It should at this juncture be 
emphasized, however, that as a+O, the use of the parallel-flow approximation is 
likely to become increasingly questionable. 

In  the following section we go on to consider the n =I= 0 modes, paying particular 
attention to cases for which n = 1 ; although there are some similarities with the 
axisymmetric case, some important and interesting differences also exist. 

5. Non-axisymmetric modes 
Khorrami (1991) presents results for an unstable mode (with a growth rate that 

diminishes as Re + 0 0 )  for the particular case n = 1. In this section we discuss the 
stability of such an asymmetric disturbance. 

We initially follow the same approach as that carried out in the previous sections 
and apply these methods to the case n = 1,  q = 0.7. Figure 7 shows the variation of 
c, (which again is real) with a, obtained from the solution of (3.3)-(3.6). Based on our 
numerical computations, this mode turned out to be similar to the slow bending 
mode obtained previously by Leibovich, Brown & Pate1 (1986). It displays the 
characteristic behaviour that both the frequency w, + 0 and the axial phase speed 
c = w , / a  + 0 as 01 + 0. The asymptotic results of Leibovich et al. (1986) evaluated for 
our mean velocity profile, are also plotted in figure 7. The asymptotic curve displays 
the correct trend and the agreement for small values of 01 is good. 

Note that in figure 7,  below a critical value of a( = a,, say), we see co < 0, while 
above this value c, becomes positive. We were able to continue the computation of 
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FIGURE 7 .  c,, vs. 01, n = 1, q = 0.7; -, inviscid calculations: ---, asymptotic results 
due to  Leibovich et al. (1986). 

c, beyond a, using the numerical scheme described in $3. However, since c, > 0, and 
our numerical results suggested co remained real, a critical layer must be present at  any 
point, ro, at which $,, = 0. Hence computation of such modes, according to Lin 
(1955), must be carried out by extending the computation into complex r-space to 
avoid the singularity in the differential equation. Although our numerical scheme 
performed extremely well, by its nature it is not amenable for obtaining solutions off 
the real r-axis. (The authors did attempt a Runge-Kutta scheme for treating 
(3.3)-(3.6), but extremely small grid sizes, which required prohibitively longer 
computer times, were necessary for adequate resolution of these modes. This was 
found even for examples in which c, < 0, i.e. for which no critical layer existed. 
Further, many spurious modes were generated with this technique.) However, below 
we suggest why it may be possible to extend these computations of (3.3)-(3.6) a little 
way into regimes where critical layers may exist, without any special modification of 
the scheme, or numerical difficulties. 

Let us initially confine our attention to values of a < a,, for which the techniques 
and analysis of the previous section are applicable without modification. In  
particular, the computed values of wi obtained from (4.10) are shown in figure 8 as 
points denoted by circles for the case n = 1 ,  q = 0.7.  They are to be compared with 
the values of wi obtained using the full viscous equations for the same case, at Re = 
6000 and 10000, as presented in the same figure. The computed and asymptotic 
values proved to be indistinguishable on the scale shown in figure 8. It is apparent 
that we are able to predict, using our asymptotic theory, the location of the lower 
neutral point (at a x 0.05) without the requirement of a further a < 1 substructure. 
Agreement between the asymptotic and fully numerical results was excellent up to 
a = a,, the point to which our asymptotic results extend. However, once a > a,, the 
critical layer situated at r, moves into the computational domain. Analysis of 
(3.3)-(3.6) revealed that the inviscid solutions are almost regular if the critical layer 
is sufficiently far away from the centreline of the vortex. From the physical point of 
view, this means that the critical layer should remain in the potential region of the 
vortex (see analysis below). The numerical results confirmed that for most values of 
a (except very close to the upper neutral curve) ro remained large. Our inability to 
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FIGURE 8. oi v5. a, n = 1, q = 0.7, fully numerical results (circles denote asymptotic points): 
-,Re = 10000; ---, Re = 6000. 

obtain the viscous corrections, (4.10), is mainly due to the failure of the local and 
global methods to converge while computing the adjoint system. Here, the 
singularity plays a more dominant role. 

As a becomes greater than a,, the full viscous equations yield values of wi which 
initially continue to increase but then rapidly drop in value to give an upper neutral 
point. In some ways the drop for the lower Reynolds number can appear more 
dramatic, but this is simply explained by the fact that the values of w, decrease with 
an increase in Reynolds number. 

For a > a,, it appears that there are two distinct possibilities to explain this 
behaviour. The first possibility, if c, remains real, implies that a critical layer exists 
on the real axis and hence a singular solution in general, although it is possible to 
show that the coefficient of this singularity is asymptotically small as ro+ 00 on 
account of the base flow (i.e. this occurs as a result of the previously neglected 
exponentially small terms). This could explain why the singular component of the 
solution is not readily observed, and perhaps why we were able to extend our 
numerical scheme for the system (3.3)-(3.6) beyond a = a, without any special 
modification or difficulties. 

However, as a increases, r, moves towards the centre of the vortex ( r  = 0). If c, 
remains real, ultimately the presence of a critical layer will become important, in 
particular its effect will be profound when r,, = O(l ) ,  implying a-a, = O(1). Perhaps 
it is this penetration of the critical layer close to the vortex centre that triggers the 
sharp drop in growth rate ac, with a, to yield the upper neutral point as seen in the 
fully viscous solutions in figure 8. However, the presence of the critical layer requires 
that a detour be made into the complex r-plane when considering the inviscid 
equations. According to Lessen et al. (1974) this detour is below the real axis if 
Re{$’(r,)} > 0, and vice versa. As remarked earlier, our numerical scheme is confined 
to the real axis, and so we were unable to carry out the computations for our 
asymptotic structure beyond a = a, with any degree of certainty. 
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FIQURE 9. Eigenfunction components, n = 1, a = 0.3, q = 0.7, inviscid calculations. 
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FIQURE 10. Eigenfunction components, n = 1, a = 0.6, q = 0.7, inviscid calculations. 

A second possibility exists, namely that the inviscid solution of (3.3)-(3.6) yields 
complex stable values of co for a > uo. This stable inviscid decay rate would then 
counteract the unstable viscous growth rate which could result in a rapid stabilizing 
trend for a > a,,. Note that although a computation of the inviscid system may yield 
two non-neutral values of c (one being the complex conjugate of the other), only one 
of these can be correct in the Re % 1 limit of the full viscous equations. The detour 
described above serves to select the appropriate root (Lin 1945a-c). Similar solutions 
are to be found in the stability of boundary layers (see Mack 1987). 

In figures 9 and 10 the inviscid eigenfunctions (normalized by H,,,) for the case 
of n = 1 and q = 0.7 are presented. The results in figure 9 correspond to a = 0.3 which 
is slightly below the critical value of the axial wavenumber, a. x 0.33. The displayed 
eigenfunctions in figure 10 correspond to u = 0.6 with the critical layer residing at 
r x 4.1. Comparing the two figures, there are hardly any noticeable differences. In 
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fact, the structure of this mode remains little changed through the upper neutral 
curve. Although not shown, the viscous eigenfunctions are virtually indistinguishable 
from the displayed curves in figures 9 and 10. 

Certainly these eigensolutions show scanty evidence of a critical layer. But this 
should not be taken as disproving our first conjecture above, on account of the 
exponentially small coefficient of the singularity, as pointed out previously, Our 
numerical scheme was unable to give a categorical vindication of either of the two 
possibilities. 

6. Conclusion 
In  this paper we have presented asymptotic analyses which describe and indeed 

conform the additional modes of instability due to viscosity recently found 
numerically for the trailing-line vortex by Khorrami (1991). Unlike the previously 
reported inviscid modes of instability, these modes are inviscidly neutral but are 
destabilized by viscosity. 

Although our investigation has been confined exclusively to the trailing-line 
vortex, there is no reason why such mechanisms should not operate in the same way 
for other vortex flows. 

Finally, it  must be emphasized again that the parallel-flow approximation has 
been employed throughout this paper, and an interesting extension of this work 
would be to  include the effects of non-parallelism. 
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